Approximation-theoretic analysis of translation invariant wavelet expansions

نویسندگان

  • Juan Liu
  • Pierre Moulin
چکیده

It has been observed from image denoising experiments that translation invariant (TI) wavelet transforms often outperform orthogonal wavelet transforms. This paper compares the two transforms from the viewpoint of approximation theory, extending previous results based on Haar wavelets. The advantages of the TI expansion over orthogonal expansion are twofold: the TI expansion produces smaller approximation error when approximating a smooth function, and it mitigates Gibbs artifacts when approximating a discontinuous function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-Shift-Invariant Orthonormal Wavelet Packet Representations

It is commonly known that wavelet expansions are very sensitive to translation of an input signal due to their dyadic structure. Without proper time alignment of the signal to the decomposition basis vectors, a compact expansion may be unattainable. Recently, work has been done to combat translation sensitivity by determining the best translation-invariant expansion of a signal with respect to ...

متن کامل

Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions

We investigate the approximation properties of general polynomial preserving operators that approximate a function into some scaled subspace of L via an appropriate sequence of inner products. In particular, we consider integer shift-invariant approximations such as those provided by splines and wavelets, as well as finite elements and multi-wavelets which use multiple generators. We estimate t...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Multiwavelets: Some Approximation-Theoretic Properties, Sampling on the Interval, and Translation Invariance

In this survey paper, some of the basic properties of multiwavelets are reviewed. Particular emphasis is given to approximation-theoretic issues and sampling on compact intervals. In addition, a translation invariant multiwavelet transform is discussed and the regularity and approximation order of the associated correlation matrices, which satisfy a particular matrix-valued refinement equation,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001